October 5th 2023 Physics Concerto Seminar Series

Supported by the Weinberg Institute for Theoretical Physics, Department of Physics, University of Texas

Beyond the Big Bang: Delving into Inflationary Cosmology

Gabriele Montefalcone

P.h.D. Candidate, Weinberg Institute for Theoretical Physics, University of Texas at Austin

BRIDGING PHYSICS SPECIALTIES THROUGH PEER TO PEER SEMINARS

History of the universe

A.J.S. Hamilton, Modern Cosmology [https://jila.colorado.edu/~ajsh/courses/as](https://jila.colorado.edu/~ajsh/courses/astr2010_22/index.html) [tr2010_22/index.html](https://jila.colorado.edu/~ajsh/courses/astr2010_22/index.html)

History of the universe

A.J.S. Hamilton, Modern Cosmology [https://jila.colorado.edu/~ajsh/courses/as](https://jila.colorado.edu/~ajsh/courses/astr2010_22/index.html) 22/index.html

Outline

- properties of our universe and big bang cosmology
- the shortcomings of the big bang model
- cosmic inflation
- challenges and shortcomings of the inflationary picture

The Cosmological Principle

$$
G_{\mu\nu}=8\pi G T_{\mu\nu}
$$

- describes the geometry and curvature of spacetime
- \bullet) it is a function of the metric $g_{\mu\nu}$

encodes how much "stuff" (matter, energy, momentum, pressure, etc.) is present at each spacetime point

$$
ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}
$$

 \bullet Cosmological principle \rightarrow FRW metric:

$$
ds^2 = -dt^2 + a(t)^2 \cdot \left(\frac{1}{1-kr^2} dr^2 + r^2 d\Omega^2 \right)
$$

 \bullet Only three possibilities: $k=\{1, \emptyset, -1\}$

J. Schombert, Cosmology [https://pages.uoregon.edu/jschombe/cosmo/l](https://pages.uoregon.edu/jschombe/cosmo/lectures/lec15.html) [ectures/lec15.html](https://pages.uoregon.edu/jschombe/cosmo/lectures/lec15.html)

 \bullet - Cosmological principle + perfect fluid \to Diagonal $\textsf{T}_{\boldsymbol{\mu} \boldsymbol{\nu}}$

$$
T^{00} = -\rho, \qquad T^{jj} = p.
$$

● Friedmann Equations:

$$
\frac{\ddot{a}}{a}=-\frac{4\pi G}{3}\rho(1+3\omega)
$$

● Fluid Equation:

$$
\frac{\dot{\rho}}{\rho} = -3H(1+w) \over \omega \equiv p/\rho}
$$

(the equation of state parameter)

$$
\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2}
$$

$$
\frac{\dot{a}}{a} \equiv H \quad \text{(The Hubble parameter)}
$$

The universe accelerates if ⍵**<-**⅓**!**

 $p_m \ll \rho_m \to \omega_m \simeq 0$: $a(t) \sim t^{2/3}$ ● Matter:

• Radiation:
$$
p_r = \frac{1}{3}\rho_r \to \omega_r = \frac{1}{3}
$$
: $a(t) \sim t^{1/2}$

• Vacuum:
$$
p_v = -\rho_v \to \omega_v = -1
$$
: $a(t) \sim e^{Ht}$

Note, a convenient notation: $\Omega_j = \rho_j/\rho_c$ (the jth energy density parameter)

$$
o_c \equiv \frac{3H^2}{8\pi G}
$$

(the critical energy density)

● Friedmann Equations:

$$
\frac{\ddot{a}}{a} = \frac{8\pi G}{3} \rho (1 - \epsilon)
$$

$$
\epsilon \equiv \frac{3}{2}(1+\omega) \quad \stackrel{\scriptscriptstyle \text{(The Hubble slow-roll parameter)}}{\scriptscriptstyle \text{(The Hubble slow-roll parameter)}}
$$

The universe accelerates if ε<1!

● The Friedmann equation can be rewritten as:

$$
1 - \sum_{j} \Omega_{j} = \Omega_{k}
$$

$$
\Omega_{k} \equiv -\frac{k}{a^{2}H^{2}}
$$

$$
\Omega = \sum_{j} \Omega_{j}
$$

Note, a convenient notation: $\Omega_j = \rho_j/\rho_c$ (the jth energy density parameter)

$$
\rho_c \equiv \frac{3H^2}{8\pi G}
$$

(the critical energy density)

General Relativity in Cosmology A.J.S. Hamilton, Modern Cosmology

[https://jila.colorado.edu/~ajsh/courses/as](https://jila.colorado.edu/~ajsh/courses/astr2010_22/index.html) [tr2010_22/index.html](https://jila.colorado.edu/~ajsh/courses/astr2010_22/index.html)

The shortcomings of Big Bang Cosmology The flatness problem

- We live in a FLAT universe
	- \circ Present observations suggest that $|\,\mathbf{\Omega}_{\theta}^{-1}\,|$ ≲10⁻³
- \bullet . Necessity of an extreme *fine tuning* of the initial value of Ω . $|\Omega - 1| \propto t$ (radiation domination) $|\Omega - 1| \propto t^{\frac{2}{3}}$ (matter domination)
	- \circ this implies $|\Omega -1|$ ≲10⁻¹⁶ at nucleosynthesis epoch, and $|\Omega - 1| \le 10^{-64}$ at Planck epoch.

The shortcomings of Big Bang Cosmology The Horizon problem

- The universe at the time of decoupling was in *thermal equilibrium,* yet there had not been enough time for distant regions to be in casual contact.
	- \circ CMB consist of \sim 10⁵ causally disconnected regions.

D. Baumann, TASI Lectures on Inflation, arXiv0907.5424

The shortcomings of Big Bang Cosmology The Monopole problem

- All Grand Unified Theories predict the existence of magnetic monopoles, extremely heavy particles with net magnetic charge.
- If these particles exist in the early universe, they could be the dominant materials in the universe, yet we do not observe them.

Cosmic Inflation

- A period of accelerated expansion in the early universe
- Explains the observed flatness, homogeneity, and the lack of relic monopoles
- Provides with a mechanism for generating the inhomogeneities observed in the Cosmic Microwave Background

[https://breakthrou](https://breakthroughprize.org/Laureates/1/L2) [ghprize.org/Laurea](https://breakthroughprize.org/Laureates/1/L2) [tes/1/L2](https://breakthroughprize.org/Laureates/1/L2)

[https://www.symmetrymagazine.org/article/december-2004january-2005/inflation?language](https://www.symmetrymagazine.org/article/december-2004january-2005/inflation?language_content_entity=und) [_content_entity=und](https://www.symmetrymagazine.org/article/december-2004january-2005/inflation?language_content_entity=und)

Cosmic Inflation

• Single scalar field minimally coupled to gravity

$$
S_{\phi} = \int d^4x \sqrt{-g} \left[\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) \right]
$$

● Slowly-rolling homogeneous field that dominates the energy density of the universe induces an *exponential* expansion

 $V(\phi) \gg \dot{\phi}^2$

$$
T_{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\delta S_{\phi}}{\delta g^{\mu\nu}} \left\{ \begin{array}{l} \rho_{\phi} = -T_{00} = \frac{1}{2} \dot{\phi}^{2} + V(\phi) + \frac{\nabla^{2} \phi}{2} \\ \rho_{\phi} = \frac{1}{3} T_{j}^{j} = \frac{1}{2} \dot{\phi}^{2} - V(\phi) - \frac{\nabla^{2} \phi}{6} \end{array} \right. \n\longrightarrow \n\begin{array}{l} \epsilon_{\phi} \equiv \frac{\frac{3}{2} \dot{\phi}^{2}}{\frac{\dot{\phi}^{2}}{2} + V(\phi)} \\ \hline \vec{a} > 0: \quad \epsilon_{\phi} < 1 \\ \hline \vec{a} > 0: \quad \epsilon_{\phi} < 1 \end{array}
$$

Cosmic Inflation

$$
H^2 \simeq \frac{8\pi G}{3} V(\phi) \longrightarrow a(t) \sim e^{Ht}
$$

● Accelerated expansion will only be sustained if the second time derivative of the field is small enough

$$
|\ddot{\phi}| \ll |3H\dot{\phi}|, |V_{,\phi}|.
$$

$$
\eta \equiv -\frac{\ddot{\phi}}{H\dot{\phi}} = \varepsilon - \frac{1}{2\varepsilon}\frac{d\varepsilon}{dN} < 1
$$

(The number of e-foldings)

D. Baumann, TASI Lectures on Inflation, arXiv0907.5424

$$
N \equiv \ln(a_f/a_i) = \int_{t_i}^{t_f} H dt
$$

The successes of Inflation The flatness problem

- \bullet During inflation: $\boxed{ \Omega -1 | \propto e^{-2 H t} }$
- To solve the flatness problem we need at the end of inflation:

$$
|\Omega_f-1|\lesssim 10^{-60}
$$

$$
\frac{|\Omega_f - 1|}{|\Omega_i - 1|} \simeq \left(\frac{a_i}{a_f}\right)^2 = e^{-2N}
$$

● Roughly 70 e-folds of inflation solve this issue!

J. Schombert, Cosmology [https://pages.uoregon.edu/jschombe/cosmo/l](https://pages.uoregon.edu/jschombe/cosmo/lectures/lec15.html) [ectures/lec15.html](https://pages.uoregon.edu/jschombe/cosmo/lectures/lec15.html)

The successes of Inflation The Horizon problem

- The *superluminal* accelerated expansion stretches a small causally connected patch, to large cosmological scales works.
- Once again, **roughly 70 e-folds of inflation are sufficient to solve this issue.**

The successes of Inflation The Monopole problem

● Simply arrange the parameters such that inflation takes place after (or during) monopole production, so the monopole density is *diluted* to a completely negligible level.

The successes of Inflation CMB anisotropies

- Provides a mechanism for generating the inhomogeneities observed in the Cosmic Microwave Background
- Quantum fluctuations are driven to cosmological scales via the expansion

$$
\frac{\delta T}{T} \sim \frac{\delta \rho}{\rho} \propto \langle \delta \phi^2 \rangle^{1/2}
$$

Planck Collaboration [https://www.esa.int/ESA_Multimedia/Images/](https://www.esa.int/ESA_Multimedia/Images/2013/03/Planck_CMB) [2013/03/Planck_CMB](https://www.esa.int/ESA_Multimedia/Images/2013/03/Planck_CMB)

Summary

- Inflation is a cosmological theory proposing a *rapid and exponential* expansion of the universe in its early moments, resolving several long-standing problems in cosmology (homogeneity, flatness, unwanted relics,origin of cosmic structures)
- Inflation is simple: a single scalar field, minimally coupled to gravity, and slowly-rolling down a nearly flat potential, does the job.

Maybe not so simple? A list of long-standing concerns

- Multiverse Hypothesis, i.e. eternal inflation
- Measure problem: are we the most likely patch of the universe?
- Initial conditions problem: are these generic or need to be fine-tuned?
- Tuning of the Inflationary model: for some, a high-degree of fine-tuning is needed to fit observations
- Quantum gravity concerns: Inflation's early moments involve extremely high energies, where the effects of quantum gravity may not be negligible
- How do we actually reheat the universe?